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Abstract

In early postnatal brain, the prefrontal cortex (PFC) remains immature and highly
plastic, particularly for the intratelencephalic (IT) neurons. However, the spatio-
temporal molecular and cellular dynamics of PFC during this period remain poorly
characterized. Here, we performed spatiotemporal single-cell RNA analysis on
mouse PFC during different postnatal time points and systematically delineated the
molecular and cellular dynamics of mouse PFC during early postnatal development,
among which IT neurons exhibit most dramatic alterations. Based on these compre-
hensive spatiotemporal atlases of PFC, we deciphered the time-specific molecular
and cellular characteristics during the maturation process of IT neurons in PFC,
particularly the dynamic expression programs of genes regulating axon develop-
ment and synaptic formation, and the risk genes of neurological developmental
diseases. Furthermore, we revealed the dynamic neuron-glia interaction patterns
and the underlying signaling pathways during early postnatal period. Our study pro-
vided a comprehensive resource and important insights for PFC development and
PFC-associated neurological diseases.

Introduction

The prefrontal cortex (PFC) serves as the central regulatory hub for higher cognitive AQ3
functions in the mammalian brain [1,2]. Its sophisticated neural networks critically

depend on the precisely coordinated spatiotemporal development of neurons [3,4].

Unlike other cortical regions, the PFC exhibits a prolonged maturation period that

extends well into postnatal life [5,6]. While neuronal fate is predominantly determined
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by prenatal gene expression patterns, the postnatal developmental processes—
including ongoing neuronal migration, axonal elongation, and synapse formation—
are fundamentally essential for establishing mature neural circuits [7—9]. Notably,
early sensory experiences, environmental changes, and stress exposure during this
period can significantly influence PFC circuit development and functionality [10—12].
For example, maternal separation during the first postnatal week reduces the num-
ber of inhibitory neurons and synapses in mouse PFC, resulting in social deficits in
adulthood [13].

Like other cortical regions, PFC follows the conserved inside-out neurogenesis
pattern during embryonic development, where neurons are generated in successive
waves from deep to superficial layers [14,15]. Corticothalamic (CT) and pyramidal tract
(PT) neurons, which reside predominantly in deep cortical layers, are born early and
almost complete their radial migration prenatally. These neurons are among the first to
establish long-range connections with thalamic and subcortical targets [16—18]. In con-
trast, intratelencephalic (IT) neurons, the most abundant excitatory neuronal population
in the cerebral cortex, distributed across both deep and superficial cortical layers, with
their migration and maturation extending into the postnatal period [14,19,20].

The first two postnatal weeks constitute a crucial period for IT axon growth and
circuit formation: axons typically reach their target regions within the first week and
undergo subsequent refinement through activity-dependent pruning [9,21]. Conse-
quently, this period is essential for the proper establishment of IT-mediated dynamic
neural circuits. Despite recent advances in characterizing the molecular diversity of
adult PFC IT neurons [22,23], the transcriptional dynamics and regulatory mecha-
nisms governing their axonal growth and synaptic integration during early postnatal
period (1—2 weeks) remain poorly understood. Elucidating these mechanisms is cru-
cial for understanding how early molecular programs shape PFC functional architec-
ture and how their disruption may contribute to neurodevelopmental disorders such
as autism and schizophrenia.

To delineate the molecular and cellular trajectories underlying postnatal develop-
ment of PFC neurons and investigate the mechanisms governing early neural circuit
assembly, we performed high-throughput single-cell RNA sequencing (scRNA-seq)
on mice PFC across four timepoints (postnatal day: P1, P4, P10, and adulthood:
P84). Our comprehensive transcriptomic atlas captured dynamic gene expression
patterns during postnatal development of neuronal maturation. By integrating these
data with spatial transcriptomic profiles from juvenile and adult PFC, we systemati-
cally mapped the spatiotemporal distribution patterns of diverse neuronal subtypes.
We analyzed in detail the stage-specific molecular characteristics during the matu-
ration process of IT neurons in different layers of PFC and the dynamic expression
programs of genes that regulate axon development and synaptic formation. We fur-
ther revealed the developmental patterns of neuron-glia interaction network and the
enrichment patterns of risk genes for neurological diseases across PFC subtypes.
This comprehensive dataset provided a valuable resource for studying the develop-
ment of mouse PFC, and can be viewed online through our user-friendly website:
https://huggingface.co/spaces/TigerZheng/PFCdev-web.
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Results
Single-cell spatiotemporal transcriptomic atlas of developing and mature mouse PFC

To investigate the cell types and gene expression patterns during mouse PFC development, we performed scRNA-seq
on mouse PFC at postnatal days P1, P4, P10, and adult (P84) (Fig 1A). These time points were selected because previ-
ous studies have shown that the first two postnatal weeks in mice involve multiple developmental events, including axon
extension, dendritic branching, and circuit assembly [9,21]. We analyzed the scRNA-seq data using Seurat [24], after
quality control and doublet removal, a total of 54,763 (10,522 for P1; 17,169 for P4; 14,063 for P10; and 13,009 for Adult)
high-quality cells (average 4,389 genes per cell) were retained for downstream analysis.

To identify the shared and unique cell types in PFC across four postnatal time points, we performed unsupervised
clustering on these cells after removing batch effects using Harmony [25]. A total of 21 PFC cell subtypes were identified
(Figs 1B and S1A), each defined by top differentially expressed genes (DEGs) and previously reported cell type marker
genes (S1B Fig and S1 Table) [22,23]. The distribution of these cell subtypes on the Uniform Manifold Approximation
Projection (UMAP) plot suggested potential developmental trajectories (Fig 1C). Notably, we observed abundant immature
IT neurons (highly expressed neurodevelopmental genes such as Cd24a) in P1 and P4 mice PFC [26], whereas mature IT
neurons (highly expressed vesicular glutamate transporter genes such as Slc17a7) were predominantly enriched in P10
and adult mice PFC [27,28] (Figs 1D, 1E, and S1C). All IT neurons in the PFC of postnatal mice expressed layer-specific
marker genes (Cux2, Rorb, Etv1, and Npy), suggesting that although they had already migrated to specific layers, they
had not yet fully matured at early postnatal days (P1 and P4). Allen ISH results of developing mouse brain further con-
firmed the existence of these immature IT neurons (Figs 1D, S1C, and S2D).

Moreover, we observed the proportions of IT neuronal subtypes changed significantly during postnatal development,
whereas other neuron subtypes such as L5 PT, L6 CT, L5 NP, and inhibitory neurons (Lamp5, Pvalb, Sst and Vip) were
already present and remained relatively steady at P1 stage (Figs 1F, S1B, and S1E), reflecting the sequential birth and
development of deep-layer neurons followed by superficial-layer neurons, which is consistent with previous reports on
other cortical development [12,15]. Non-neuronal cells (Astro, Microglia, Oligo, OPC) were rare at birth, primarily existing
as neural progenitor cells (NPCs). Then their amounts were gradually increased with age, which is consistent with the
period of gliogenesis after birth [14].

To further analyze the cell subtypes with their spatial organization, we collected previously published spatial-omics data
from sagittal sections of mice at P1 and P77 [29], and extracted the data of PFC region for spatial transcriptomic analysis
(S1F Fig). We mapped the cell subtypes from our scRNA-seq atlas onto the spatial coordinates of the P1 (Figs 1G, 1H,
and S1G) and P77 (Figs 11, 1J, and S1H) stereo-seq datasets using Cell2location [30]. The spatial mapping results con-
firmed that immature IT neurons were predominantly observed in P1, which already exhibited layer-specific localization,
while in adult, there were mainly mature IT neurons (Fig 1H and 1J). Other neuronal subtypes, including L5 PT, L6 CT, L5
NP, and inhibitory neurons have been already appeared at P1 stage. This spatial localization further supports the dynamic
developmental progression of PFC neurons from early postnatal immaturity to adult maturity.

Transcriptomic dynamics of mouse PFC neurons during postnatal development

During the first two postnatal weeks of mice, neurons in PFC undergo multiple developmental events, including axon elon-
gation, dendritic branching, and circuit assembly [9]. These events are regulated by the expression of specific transcrip-
tomic programs. Thus, we further analyzed the transcriptomic dynamics of 34,050 excitatory neurons and 7,025 inhibitory
neurons from our scRNA-seq data (Fig 2A). To investigate the correspondence of neuronal subtypes at different ages, we
applied a supervised classification framework to identify temporal associations among neuronal subtypes based on tran-
scriptomic similarity. Our analysis revealed distinct transcriptomic dynamics among different neuronal subtypes (Figs 2B
and S2A-S2C). IT neurons displayed the highest dynamic score across ages, suggesting significant transcriptional
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Fig 1. Spatiotemporal molecular and cellular atlas of mouse PFC during postnatal development. (A) Schematic diagram of experimental
workflow, created with BioRender.com. C57BL/6J mice at four time points (P1, P4, P10, and Adult) were selected, and the PFC region of the brain was
dissociated. Then, scRNAseq libraries construction and sequencing were performed, followed by downstream analysis. (B) Uniform Manifold Approxima-
tion Projection (UMAP) of all cells in mouse PFC from scRNA-seq data, which is colored by cell subtypes. Im, immature. (C) UMAP of all cells in mouse
PFC from scRNA-seq data, which is colored by time stages. (D) Expression of genes for defining immature and mature IT subtypes in UMAP. (E) Allen
mouse brain ISH images of Cd24a (immature IT, top) and Sic17a7 (mature IT, bottom) genes at E18.5, P4, P14, and P56. (F) Proportion of each cell
subtype at each developmental stage. (G) Spatial distribution of all cell subtypes in mouse PFC from P1 stereo-seq data. (H) Spatial distribution of each
excitatory neuronal subtype in mouse PFC from P1 stereo-seq data. (I) Spatial distribution of all cell subtypes in mouse PFC from adult stereo-seq data.
(J) Spatial distribution of each excitatory neuronal subtype in mouse PFC from adult stereo-seq data.

https://doi.org/10.1371/journal.pbio.3003594.9001
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Fig 2. Transcriptomic dynamics of mouse PFC neurons during postnatal development. (A) Uniform Manifold Approximation Projection (UMAP)
of all neurons in mouse PFC from scRNA-seq data, which is colored by neuronal subtypes. (B) Sankey diagram shows temporal associations among
mouse PFC neuronal subtypes across ages identified by transcriptomic similarity. Nodes, individual PFC neuronal subtypes at each age; edges, colored
based on transcriptomic similarity. (C) Transcriptomic dynamics of each neuronal subtype between each pair of consecutive ages, quantified based

on transcriptomic similarity. Dynamic score (1 = Rand index (RI)) ranges from 0 (low variation) to 1 (high variation). Bar heights, mean score com-

puted across pairs of consecutive ages; error bars, standard deviation; P=0.038 for IT against PT. IT neurons are merged into one subtype. The data
underlying this Figure can be found in S1 Data. (D) Volcano plots show the differentially expressed genes (DEGs) of each neuronal subtype between
different ages. The neuronal subtypes of each age are compared with the same neuronal subtypes of the previous age. Orange, up-regulated genes;
purple, down-regulated genes. (E) Top 4 gene ontology (GO) terms for DEGs in each age comparison. Orange, GO terms of up-regulated genes; purple,
GO terms of down-regulated genes. (F) Volcano plots show the DEGs between immature and mature IT neurons, separated by different layers. Color
represents log2(fold change), point size represents -log10(P value). (G) UMAP visualization of C/stn2 gene expression in IT neurons of mouse PFC
(left). Allen mouse brain ISH images of Clstn2 gene at E18.5, P4, P14 and P56 (right). (H) UMAP visualization of Kctd12 gene expression in IT neurons
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of mouse PFC (left). Allen mouse brain ISH images of Kctd12 gene at E18.5, P4, P14 and P56 (right). (I) UMAP visualization of Igfbp4 gene expression
in IT neurons of mouse PFC (left). Allen mouse brain ISH images of Igfbp4 gene at E18.5, P4, P14 and P56 (right). (J) UMAP visualization of Cck gene
expression in IT neurons of mouse PFC (left). Allen mouse brain ISH images of Cck gene at E18.5, P4, P14 and P56 (right).

https://doi.org/10.1371/journal.pbio.3003594.9002

reprograming in PFC IT neurons during postnatal development (Figs 2C and S2C). In contrast, PT, NP, CT, and inhibitory
neurons displayed significantly low dynamic score across ages, indicating that their transcriptomic subtypes remained
largely consistent (Figs 2C and S2B).

Next, we investigated how genome-wide expression profiles of individual neuronal subtypes change during develop-
ment. To this end, we identified DEGs of each neuronal subtypes between different time points based on scRNA-seq data
(Figs 2D and S2D). Gene ontology (GO) enrichment analysis revealed that genes related to neuronal development and
synaptic organization were abundant in the first two postnatal weeks, and genes related to synaptic signaling transmission
were up-regulated concomitant with development (Fig 2E).

Given that IT neurons undergo a developmental transition from immature to mature subtypes, we further analyzed the
DEGs of layer-specific IT neurons during postnatal development (Fig 2F and S2 Table). Immature IT neurons predomi-
nantly express genes associated with neuronal development. For example, Cistn2, which plays crucial roles in nervous
system development and synaptic plasticity [31,32], is highly expressed in immature L2/3 IT neurons at P1, but signifi-
cantly reduced concomitant with development (Fig 2G and S2E). Moreover, Kctd12, a key gene affecting neuronal excit-
ability and synaptic transmission by regulating voltage-gated potassium channels [33], is highly expressed in immature L6
IT neurons at P1 and P4, but hardly expressed in adult (Figs 2H and S2F). In contrast, mature IT neurons predominantly
express genes associated with neuronal vesicular transport. For example, Igfbp4 is highly expressed in the mature L2/3
IT neurons at P14 (Figs 21 and S2G). Cck gene encodes cholecystokinin protein belonging to the neuropeptide family, is
highly expressed in all mature IT neurons in P14 and adult mice (Figs 2J and S2H).

Identification of cell-type-specific transcription factors during IT neuron postnatal development

Our scRNA-seq data revealed significant transcriptomic dynamics of PFC IT neurons during postnatal development.
To further investigate the heterogeneity of IT neurons during development, we reconstructed the developmental trajec-
tory of PFC IT neurons using Monocle2 [34] (Fig 3A and 3B). Pseudotime analysis delineated the dynamic progression
from immature IT neurons to mature IT neurons (Fig 3C). IT neurons at different developmental timepoints were orderly
distributed along the pseudotime axis. IT neurons at P1 and P4 predominantly located at the beginning of the trajec-
tory, while those at P10 and adult predominantly located at the end of the trajectory (S3A-S3D Fig), suggesting that IT
neuron maturation is tightly synchronized with temporal progression. We observed some L6 IT neurons appear early in
pseudotime. This is because deep neurons develop first, so some L6 IT neurons have already matured at P1. Through
differential gene expression analysis, we identified 3,198 genes that exhibited significant alterations along pseudotime
(S3 Table). These genes were clustered into five distinct modules. GO enrichment analysis revealed the function of
each gene module (Fig 3D). Genes highly expressed at the beginning of the trajectory were associated with neuronal
development and projection organization, whereas those enriched at the end of the trajectory were associated with cell
communication and transport.

The development of neurons and their projection organization are under the control of transcription factors (TFs) [4].
Using SCENIC [35], we identified distinct regulons in each IT neuronal subtype (S3E Fig and S4 Table). Based on these
results, we delineated a spatiotemporal TFs landscape during IT neuron maturation (Fig 3E). We found that IT neurons
were regulated by distinct TFs during different mature and immature states. Immature IT neurons at P1 were primarily
regulated by neurodevelopmental TFs, such as the Sox gene family, whereas mature IT neurons at adult were mainly
regulated by metabolic and signaling transmission-related TFs, such as Nr1d1(+), Hes1(+), Rxrg(+). Of note, these TFs
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Fig 3. The maturation dynamics and the underlying transcription factor regulation of mouse PFC IT neurons during postnatal develop-
ment. (A) Uniform Manifold Approximation Projection (UMAP) of mouse PFC IT neurons at different ages during development, which is colored by
pseudotime value. (B) Pseudotime trajectory of IT neurons, which is colored by time stages. (C) Pseudotime trajectory of each IT neuron subtype,
which is colored by IT subtypes. (D) Heatmap shows gene modules associated with pseudotime and gene ontology terms for each gene modules.
(E) Schematic illustrates the spatially specific TFs regulation of IT neurons in the immature (left) and mature (right) mouse prefrontal cortex (PFC).
(F) Dotplot shows the specific TF regulons expressed in each IT neuron subtype. (G) The TF regulatory networks of relguons Sox11(+), Sox12(+),
Atf4(+), Tbr1(+) and their top 20 target genes are shown respectively. Edges are colored based on importance score. The TF binding motifs are
shown on the left. (H) UMAP visualization of Sox77 gene expression in IT neurons (left). Allen mouse brain ISH images of Sox77 gene at E18.5,
P4, P14, and P56 (right). (I) UMAP visualization of Sox12 gene expression in IT neurons (left). Allen mouse brain ISH images of Sox712 gene at
E18.5, P4, P14, and P56 (right). (J) UMAP visualization of Atf4 gene expression in IT neurons (left). Allen mouse brain ISH images of Atf4 gene
at E18.5, P4, P14, and P56 (right). (K) UMAP visualization of Tbr1 gene expression in IT neurons (left). Allen mouse brain ISH images of Tbr1 gene
at E18.5, P4, P14, and P56 (right).

https://doi.org/10.1371/journal.pbio.3003594.g003
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exhibit layer-specific spatial expression patterns, underlying the specific regulation of the development IT neuronal sub-
types within precise locations at different developmental stages (Fig 3E and 3F).

We further analyzed four TFs (Sox11(+), Sox12(+), Atf4(+), and Tbr1(+)) that regulate immature IT neurons in differ-
ent cortical layers, and constructed their downstream target gene regulatory networks. These TFs bind to target genes
through specific binding motifs to exert regulatory functions (Fig 3G). The spatial expression patterns of these TFs were
further validated by Allen ISH data. Sox77, which has been previously reported in the regulation of circuit development of
L2/3 IT neurons in the motor cortex [15], is highly expressed in immature L2/3 IT neurons at P1 (Fig 3H). Similarly, imma-
ture L4/5 IT neurons highly express Sox12 (Fig 3l), whereas Atf4 and Thr1 are expressed in immature L5 IT and immature
L6 IT neurons, respectively (Fig 3J and 3K). These findings provided new insights for understanding the transcriptional
logic of IT neuron postnatal development.

Dynamics of circuit wiring molecules during IT neuron postnatal development

Cadherins and axon guidance molecules, play crucial roles in neural circuit wirings [36]. Using scRNA-seq, we analyzed
the differential expression of 371 cadherins and axon guidance genes during postnatal development, and identified
numerous molecules show developmental stage-specific expression patterns (Fig 4A and S5 Table). Furthermore, we
compared the differentially expressed cadherins and axon guidance genes in different IT neuronal subtypes during devel-
opment (Figs 4B and S4A). For example, Dcc, a cell membrane receptor that plays important roles in axon guidance of
neurons [37], is highly expressed in immature L2/3 IT neurons at P1. In contrast, the cadherin CamkZ2a, which influences
learning and memory processes by regulating neurotransmitter release and synaptic plasticity [38], is highly expressed in
mature L2/3 IT neurons at Adult (Figs 4B and S4A).

These circuit wiring molecules are often co-expressed in neuronal subtypes, achieving co-regulation of neurons in
the form of gene co-expression modules [39]. To explore the association of these molecules with neuronal development,
we constructed a gene co-expression network of cadherin and axon guidance genes using hdWGCNA [40], and identi-
fied five distinct co-expression modules (Figs 4C and S4B). We found that these gene modules exhibit distinct neuronal
subtype enrichment and development-specific expression patterns. For example, Module 1 (M1) was mainly expressed in
immature L2/3 IT neurons, while Module 2 (M2) was expressed in all immature IT neurons. Both M1 and M2 were highly
expressed at P1, gradually reduced by adulthood. GO enrichment analysis revealed that these modules were primarily
associated with axonogenesis and nervous system development functions (Fig 4D). Module 3 (M3) was highly expressed
in immature IT neurons at P4 and P10 and was associated with synaptic development functions. Module 4 (M4) was
mainly expressed in mature IT neurons of adult mice. Module 5 (M5) was primarily highly expressed in L6 CT neurons and
remained relatively stable during postnatal development (Fig 4D).

We subsequently conducted further analysis of the hub genes in each gene module. M1 highly expressed genes
including Cntn2, Clstn2, Robo2, Plxna4, and Unc5d (Fig 4E and 4F). The cell adhesion molecule Cntn2 played a
crucial role in axonal connectivity and nervous system development [41]. Allen ISH results confirmed its expression in
immature L2/3 IT neurons during early postnatal stages (Fig 4G). Lrp8, Igsf3, Sema4g, Ncam1, and Cdh2 were highly
expressed in M2 (S4C and S4D Fig). The axon guidance molecule Sema4g, preferentially expressed in all immature
IT neurons during early postnatal development (S4E Fig), was associated with early neuronal axon formation [42].

M3 expresses high-level of Efnb3, Cdh13, Sdc3, Cd200, and L1cam (S4C and S4D Fig). Allen ISH results demon-
strated that Cdh13 showed low expression during early postnatal and adult stages, but high expression at P4 and P14
(S4F _Fig). M4 highly expressed CamkZ2a, Clstn3, Clstn1, Nptn, and App (S4C and S4D Fig). Allen ISH results validated
that Camk2a exhibited low expression at birth but high expression in adulthood (S4G Fig). M5 specifically expressed
Lrrtm2, Cdh11, Rgma, Ephb1, and IsIr2 (S4C and S4D Fig). These results suggested that different cadherins and axon
guidance molecules may contribute to the construction of neural circuits at different postnatal developmental stages
with specific spatial patterns.
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Fig 4. Expression dynamics of cadherin and axon guidance genes in mouse PFC during postnatal development. (A) Volcano plots show the

differentially expressed cadherin and axon guidance genes of each PFC neuronal subtype between different ages. The neuronal subtypes of each

age are compared with the same neuronal subtypes of the previous age. Orange, up-regulated genes; purple, down-regulated genes. (B) IT neuron
subtypes-specific cadherin and axon guidance genes during development. Nodes, individual IT neuron subtypes at each age; edges, cell developmental
trajectories, colored by IT subtypes. Top 2 cadherin and axon guidance genes specifically expressed in each node are displayed. (C) Co-expression
network of cadherin and axon guidance genes. Each node represents a single gene, and edges represent co-expression links between genes. Genes

are divided into five co-expression modules. The top 5 hub genes per module are labeled. (D) The expression distribution of each gene module on

Uniform Manifold Approximation Projection (UMAP) (left), the expression change curve with age (middle left), the expression heatmap of top 20 hub
genes in each neuronal subtype (middle right), and the gene ontology (GO) terms for each module are shown, respectively. (E) Co-expression network
diagram for module 1. (F) Violin plot shows the expression level of module 1 top 5 hub genes in all IT neurons at different ages. (G) Allen mouse brain
ISH images of Cntn2 gene at E18.5, P4, P14, and P56.

https://doi.org/10.137 1/journal.pbio.3003594.9004

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003594  January 12, 2026

9/24


https://doi.org/10.1371/journal.pbio.3003594.g004

PLON. Biology

Interactions between glial cells and IT neurons during postnatal development

Glial cells play active roles in neuronal development, such as synapse formation and myelination [43,44]. To investigate
the potential influences of glial cells on PFC neuron development during postnatal development, we firstly reconstructed
gliogenesis trajectories using Monocle2 (Fig 5A and 5B). Pseudotime analysis further revealed distinct developmental tra-
jectories among different glial subtypes (Fig 5C). The early postnatal stages (P1 and P4) contained abundant NPCs and
oligodendrocyte precursor cells (OPCs), located at the beginning of the pseudotime trajectory. These cells subsequently
differentiate into astrocytes and oligodendrocytes [45]. Some NPCs positioned later in the pseudotime axis is because
NPCs still exist in the P10 age, reflecting the plasticity of neurons in the first two weeks after birth [7,8]. Mature astro-
cytes and oligodendrocytes were located at the end of the trajectory and exhibited different developmental trajectories.
Glial cells from different ages showed orderly distribution along the pseudotime axis, indicating that gliogenesis is tightly
synchronized with temporal progression (S5A-S5D Fig).

Through differential gene expression analysis, we identified 2,441 genes that exhibited significant changes along
pseudotime (S6 Table). These genes were clustered into six distinct modules. GO enrichment analysis revealed the func-
tion of each gene module (Fig 5D). Genes highly expressed at the beginning of the trajectory were associated with meta-
bolic process and nervous system development, whereas those enriched at the end of the trajectory were associated with
cell transport and myelination. These findings suggest that the development of glial cells might be tightly synchronized
with the maturation of neurons.

To further investigate the cell—cell interactions among glial subtypes and IT subtypes, we employed CellChat [46] to infer
intercellular communication networks at four postnatal developmental stages (Fig 5E). The analysis revealed strong com-
munication of astrocytes with IT neurons at P1, which gradually reduced by adulthood. Oligodendrocytes showed higher
communication with IT neurons at P4 and P10, but much weaker in adulthood. OPCs maintained consistently strong com-
munication with IT neurons across all developmental stages, while microglia demonstrated relatively weak communication at
every stage. Subsequently, we explored the ligand-receptor pairs that showed significant age-dependent variations (Figs 5F
and S5E—-S5H). At P1, astrocytes expressed the ligand gene Slit2, which may interact with receptor genes Robo1 and Robo2
in IT neurons, activating the SLIT signaling pathway (S5E and S5I Fig). Slit-Robo signaling is well known for axon repulsion
during nervous system development [47]. At P4 and P10, oligodendrocytes expressed the ligand gene Sema3d, which may
engage with receptor genes including Nrp1 and Plxna7 in IT neurons, activating the SEMAS3 signaling pathway (Figs 5H,

51, and S5G). Ligand-receptor spatial colocalization analysis further validated that Sema3d-PIxna1 genes exhibited strong
interactions at P10, but significantly reduced at Adult (Figs 5J, 5K, and S5J).

Collectively, these findings demonstrated that glial cells may play crucial regulatory roles during the development of
IT neurons. The temporally specific communication patterns and distinct signaling pathways employed by different glial
subtypes suggest their possible specialized functions in guiding neuronal maturation and circuit formation during postnatal
development.

Enrichment of neurological developmental disease risk genes in mouse PFC during postnatal development

PFC is known to be associated with numerous neurological diseases [48]. Deciphering the cell subtype-specific and
developmental stage-dependent expression patterns of neuropsychiatric risk genes is fundamental to elucidating dis-
ease pathogenesis. To this end, we investigated the enrichment of risk genes for eight neurological disorders in diverse
PFC cell subtypes during postnatal development using scDRS [49] and GWAS summary statistics from previous studies
(S7 Table) [50-58]. These diseases include attention deficit hyperactivity disorder (ADHD), anorexia nervosa (ANO),
autism spectrum disorder (ASD), bipolar disorder (BP), major depressive disorder (MDD), obsessive-compulsive disorder
(OCD), schizophrenia (SCZ), and tourette syndrome (TS). Overall, risk genes associated with different diseases tend to
be enriched in specific cell subtypes of mouse PFC (Fig 6A). For example, risk genes linked to ADHD, ASD, BP, SCZ,
and TS are primarily enriched in excitatory neuronal subtypes, while risk genes associated with OCD are mainly enriched
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Fig 5. Gliogenesis dynamics and their communications with IT neurons in mouse PFC during postnatal development. (A) Uniform Manifold
Approximation Projection (UMAP) of glial subtypes at different ages during postnatal development, which is colored by pseudotime value. Microglia are
excluded due to different developmental origins. (B) Pseudotime trajectory of glial cells, which is colored by pseudotime value. (C) Pseudotime trajec-
tory of each glial subtype, which is colored by glial subtypes. (D) Heatmap shows gene modules associated with pseudotime and gene ontology terms
for each gene modules. (E) Cell—cell communication network among glial subtypes and IT neuron subtypes at different postnatal stages. (F) Signaling
pathways are ranked based on differences in overall information flow across ages in the inferred networks. (G) The inferred SLIT signaling pathway
network among glial subtypes and IT neuron subtypes at different ages. (H) The inferred SEMAS signaling pathway network among glial subtypes and
IT subtypes at different postnatal ages. (I) Violin plots show the expression levels of the ligand gene Sema3d in oligodendrocytes (top) and the receptor
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gene Plxna1 in IT neurons (bottom) at different postnatal stages. (J) Visualization of co-localization expression of Sema3d and Pixna1 in P10 (left) and
Adult (right) mice PFC after cell segmentation. Color indicates the intensity of co-localization expression. (K) Quantitative comparison of Sema3d and
PlIxna1 co-localization expression in P10 and Adult mice PFC. The data underlying this Figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3003594.9005

in inhibitory neuronal subtypes. And risk genes associated with MDD are enriched in both excitatory and inhibitory neu-
ronal subtypes. ANO-related risk genes are mainly enriched in microglia subtype (Figs 6A, 6C, and S6H). These findings
emphasize the cell type specificity of neurological disease risk, suggesting that genetic susceptibility may converge on
certain cell subtypes during postnatal stages.

We further analyzed the temporal expression patterns of disease-associated risk genes in each cell subtype enriched
for different neurological diseases. The top 1,000 GWAS disease risk genes by weight score were used for analysis
(S8 Table). Differential gene expression analysis suggested that these disease risk genes may function at different devel-
opmental ages and specific cell subtypes (Figs 6B and S6A-S6G). For example, MDD risk genes were primarily enriched
in neuronal subtypes, which agreed with previous study indicating that alterations in gene expression of glutamatergic
and GABAergic neurons may lead to MDD symptoms [59]. ANO risk genes were enriched in microglia subtype, showing
distinct enrichment patterns (Fig 6C and 6D). Previous studies have reported a reduction in the number of microglia in
ANO mice [60]. Tcf4 and Egr1 are two risk genes for MDD, and their expression is reduced in MDD patients according
to previous studies [61,62]. They show different temporal expression patterns. Our data indicated that Tcf4 in IT neurons
was mainly expressed at P1, while Egr1 was predominantly expressed at adult (Fig 6D and 6E). Allen ISH results further
validated the expression patterns of these genes across different postnatal ages (Fig 6F). Together, these results depict
how risk genes for various neurological diseases are enriched in specific cell subtypes at different postnatal time points,
helping to understand the causes of diseases and discover therapeutic targets.

Discussion

In this study, we systematically dissected the dynamic changes in cell types and transcriptional profile during postnatal
development of the mouse PFC by integrating scRNA-seq data and spatial transcriptomic data from different developmen-
tal time points. Our data demonstrated that while IT neurons in early postnatal mice (P1 and P4) have already migrated
to specific cortical layers, they are not fully mature. Through spatiotemporal expression analysis of marker genes and
spatial mapping of cell subtypes, we found that immature IT neurons already exhibit layer-specific distribution at P1, but
their transcriptomic profiles were significantly different from those of mature IT neurons in adulthood. This result supported
the view that “neurons require additional transcriptomic and functional maturation after completing migration” [15]. Nota-
bly, other neuronal subtypes (e.g., L5 PT, L6 CT, and inhibitory neurons) show relatively consistent transcriptomic profiles
during postnatal development, consistent with the view that deep-layer neurons mature first and superficial-layer neurons
mature later during cortical development [12].

Our data also provided an in-depth investigation of dynamic expression patterns of TFs and circuit wiring molecules
in PFC IT neurons during postnatal development. We found that these TFs have spatiotemporal expression patterns,
which bind to target genes through specific binding motifs to form complex regulatory networks. By constructing gene
co-expression networks, we discovered that axon guidance molecules and cell adhesion molecules exhibit modular
expression patterns across different developmental stages. These TFs regulate molecules such as axon guidance cues
and play crucial role in neuronal development and circuit formation [3,4]. These precise temporally regulated expression
patterns reflect dynamic molecular requirements during neural circuit assembly and refinement [41,42], while also provid-
ing important clues for understanding the pathogenesis of neurodevelopmental disorders [38,63].

Glial cells (e.qg., astrocytes, microglia, and oligodendrocytes) play crucial roles in the development of neurons through
dynamic cell-cell communications during postnatal PFC development. These spatiotemporal interactions are mediated by

PLOS Biology | https://doi.org/10.1371/journal.pbio.3003594 January 12, 2026 12/24



https://doi.org/10.1371/journal.pbio.3003594.g005

PLO?%. Biology

A P1 P4 P10 Adult
4- ** * k% >
2 | T R =
_g: J— T - ! - S
45 * * * *
2 S —— | e i 2
Smm e Rapg e 8
- % % * T
u L] | - 5
g o ey = 2
g™ ** *
g 4ok *% * % * * KX
& ®
8 g..---____-_—-._---.---__,-.---._-- 3
b * * o
* * —
@ 4 X x* * * * w Kok . o =
Q 2] ‘mnnlle - mli=l_ _,-_-_I__ IIII | S
3 = L | e (o)
c '2' -
3 * * %
4
-3 * )
- e D — ) o ——— e
72_ — - - - - BE - o
* p—
I * * * % [ * 5 i =
_g:__l___-I--_l _,-_-----_-I-I_-_.._ Q
4- * * * * %% * % * *
2- —
o- ---__.I-_-_-__-__-_____. T 7
-2-'«/'\/'\/'\{/!&/'\%"\'&,"é,/'\f'\/'\/'\f'\/'\é'xﬂz/'\ < /'\/'\f'\f'\/'\'«q/'\'k%"\'&"'é,/'\f'\/’\/'\é'&fzk«'«:"\""b_
SASEL PSR 20 & S & L& 8 PP RSO S SRS PSR AL PSR 2.
»M‘?f“iﬁ% 0 A S RS S TR T R e
< X S SN
O A S AR C RS S SOSS DR N S e et
B Differential expression of major depressive disorder (MDD) associated risk genes in each cell subtype during postnatal development
Saf Adult
c |
©
5
3, Gabrar
S 2| ‘Rab3b Prox
2 Chim2
) lgsf21 Ao Rab3b Ardc!: Calbl G"’az Vstm2 Fowz EBbE Vs{mzﬂ
2 | 3 Can13 Mef2c i3 war s Rasqrp1 Rasgrp? VS22 Ra o |
=l cun13 Canazd” P Vsimza i PPR3C2 anw SQP Cacna1.e 'Pfkcs Lrrtm2 o Gl :
o'l o ol Do “act ¢ !
o | 1849
g
TS e oN SRR S SR, S % © 3 S < :
X ¢ O NN \ @° NI X \ \ \ \ X @ NS o\ W C! 2° N
\S o Lo AV pe ) AV Al (ABY \S \© W 0PV A0 pt % st e 5 3 o N
A VT e\ on ? IS O GV 0 013 Tore d\\\:u 6“\‘\’ RSt 6\)\\\‘ &\“ o pod
s 7 Gene expression
ANO risk genes 0 - m— 2
[ hstro opc Astro
; 2
NPC v NPC 2
o Oligo AT Oligo 5
T 2
NP TN NP~ =
. Microglia v { Microglia \
cr N (L N
] S o
! 2
A S
R PT PT Inhibitory | &
Netron  T=eo__ .. ]
= <
Tcf4 expression in IT neurons Egr1 expression in IT neurons
4-
4
3
°
8
3 c,
= S
S 2
2’ 8
g g
g W
w1
o i L
PIIT  P4IT  PI0IT  AdultiT PIIT  PAIT  P10OIT  AdultiT

Fig 6. Enrichment analysis of neurological developmental disease risk genes in diverse cell subtype of mouse PFC during postnatal
development. (A) Barplot shows the enrichment levels of GWAS candidate genes from 8 PFC-related disease in different cell subtypes. The bar
heights represent mean disease score calculated by scDRS, annotated with time stages and cell subtypes. Asterisks denote the cell subtypes with
P-value <0.05. ADHD, attention deficit hyperactivity disorder; ANO, anorexia nervosa; ASD, autism spectrum disorder; BP, bipolar disorder; MDD, major
depressive disorder; OCD, obsessive-compulsive disorder; SCZ, schizophrenia; TS, tourette syndrome. (B) Volcano plot shows the differential expres-
sion of MDD risk genes across different postnatal stages in subtypes marked with asterisks in (A). The top 3 risk genes are displayed in each subtype.
(C) Uniform Manifold Approximation Projection (UMAP) visualization of the MDD (left) and ANO (right) scDRS disease score. (D) Heatmap shows the
expression of MDD and ANO risk genes in their enriched subtypes. (E) Violin plot shows the expression level of Tcf4 (left) and Egr1 (right) genes in
MDD-enriched IT neurons at different ages. (F) Allen mouse brain ISH images of Tcf4 (up) and Egr1 (bottom) genes at E18.5, P4, P14, and P56.

https://doi.org/10.1371/journal.pbio.3003594.9006
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specific signaling molecules secreted by specific glial cells at different stages, which elegantly regulate the developmental
processes of neurons such as synapse formation and myelination [43,44,64]. Our intercellular communication analysis
revealed several important signaling pathways (such as SLIT and SEMA3) may mediate glia-IT neurons interaction, which
would play important roles in axon guidance and fasciculation of PFC IT neurons [47,65]. These findings revealed the
active and dynamic regulatory roles of glial cells during IT neuron maturation. The precise spatiotemporal interactions
between glial cells and neurons likely serve as critical safeguards for proper neural network assembly.

The postnatal PFC is vulnerable to neurodevelopmental and neurological diseases, many of which are associated with
specific cell subtypes and developmental stages [48]. For example, IT/PT imbalance is a cause of many neurological dis-
eases such as autism, schizophrenia, and depression [66]. Abnormalities in CT neural circuits may lead to diseases such
as schizophrenia and bipolar disorder [67]. Disruption of the development or function of GABAergic interneurons may lead
to epilepsy and other neuropsychiatric disorders associated with cognitive impairment [68]. In this study, we systematically
analyzed the enrichment patterns of GWAS risk genes for 8 PFC-associated neurological diseases across different cell sub-
types during postnatal development [50-58]. Our data revealed that disease risk genes exhibit distinct cell-type-specific and
developmental-stage-specific expression profiles. For example, MDD risk genes tend to be enriched in neuronal subtypes,
while ANO risk genes tend to be enriched in Microglia subtype, which is consistent with previous study [59,60]. And MDD risk
genes show different temporal expression patterns. This discovery provided critical insights for understanding the pathogen-
esis of neurological diseases, suggesting that genetic susceptibility may contribute to disease onset by affecting specific cell
subtypes during distinct developmental stages. Future research could further investigate the functional mechanisms of these
risk genes within identified cellular subtypes and elucidate how they collectively lead to neural circuit dysfunction, thereby
advancing the translation from genetic associations to mechanistic understanding.

In conclusion, our data revealed the spatiotemporal molecular and cellular dynamics of the mouse PFC during postnatal
development. However, further research with more age stages single-cell and spatial transcriptome data is needed for a more
comprehensive understanding of PFC maturation. And the functions of some key TFs, circuitry molecules, and signaling path-
ways also require further experimental investigation. Additionally, all analyses in this study were performed on mice. Although
some studies have reported certain conservation of neocortical cell types across mammalian species [29,69,70], considering
the timing differences in PFC development among different species, especially between mice and human, it remains unclear
whether the cell types and gene expression dynamics during PFC development in mice are also applicable to other species.

Methods
Ethical statement

All animal procedures in this study were strictly conducted in accordance with the Guideline for Ethical Review of Ani-

mal Welfare (GB/T 35892-2018) of the People’s Republic of China. All animal experiments (HZAUMO-2025-0270) were
conducted according to protocols approved by the Scientific Ethics Committee of Huazhong Agricultural University, Hubei,
China. The brain tissue for single-cell RNAseq was obtained from mice at different postnatal ages: P1, P4, P10, P84.
Animals were housed in standardized cages with a 12 h:12h light:dark cycle with unrestricted access to food and water.

Single-cell dissociation

All mice used for scRNA-seq were female. Two mice at each time point were used for single-cell sequencing. Mice were
anesthetized on ice then its brain tissue was immediately sectioned into 250 um slices in ice-cold ACSF (124 mM NacCl,
2.5mM KCI, 1.2mM NaH,PO,, 24 mM NaHCO,, 5mM HEPES, 13mM glucose, 2mM MgSO,, and 2mM CaCl,, pH: 7.3-7.4)
on vibratome (Leica VT1200). Slices containing PFC region were transferred into Petri dish containing ice-cold ACSF with
45 pM Actinomycin D (Sigma-Aldrich, Cat# A1410). PFC tissue was isolated under a microscope then quickly cut into small
pieces less than 1 mm and transferred to digestion buffer containing 3mg protease XXIll (Sigma-Aldrich, P5380) and 30
U/ml papain (Sigma-Aldrich, P3125). The digestion was performed at 34 °C for 20 min and bubbled with a mixture gas of
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95% O, and 5% CO, continuously. After the digestion, the tissue was transferred to stop buffer (ACSF contain 1 mg/ml
Trypsin Inhibitor (Sigma-Aldrich, T6522), 2 mg/ml BSA (Sigma-Aldrich, A2153), and 1 mg/ml Ovomucoid Protease Inhibitor
(Worthington, LK003153). The digested tissue was titrated with 4 polished Pasteur pipets, of which the bore diameter of the
pipets is successively decreasing from 600 to 150 pm. Following trituration, suspension was filtered through a 30 mm filter,
then centrifuged at 300g for Smin. The pellet was then resuspended in ice-cold, carbogen-bubbled ACSF with 0.01% BSA to
reach a final concentration of 40-50 cells per microliter and then subject to scRNA-seq library preparation using BD Rhap-
sody single-cell Analysis System (BD Biosciences, 633702) according to the manufacturer’s manual.

Single-cell RNA sequencing library preparation

Single-cell capture and library preparation were performed by the BD Rhapsody Single-Cell Analysis System (BD Bio-
sciences, USA). Briefly, single-cell suspension was loaded into a BD Rhapsody cartridge (BD Biosciences, 633733), and
single-cell mMRNA capture was achieved by the cartridge with >200,000 microwells and magnetic beads (BD Biosciences,
664887) with barcoded capture oligos. Then, beads were collected for subsequent cDNA synthesis and library construc-
tion following the BD Rhapsody single cell 3' whole transcriptome amplification (WTA) workflow. Finally, the libraries were
quantified using the Agilent 2100 Bioanalyzer (Agilent, USA) and the Qubit 4.0 (Thermo Fisher Scientific, USA) and were
sequenced on lllumina NovaSeq 6000 (lllumina, USA) with 300-bp reads (150-bp paired-end reads).

RNA FISH tissue section preparation

Mice were perfused transcardially with 4% paraformaldehyde (PFA). The harvested brains were post-fixed in 4% PFA for
24 h at 4 °C and then cryoprotected by immersion in 30% sucrose until they sank. Subsequently, the brains were embed-
ded in OCT compound and sectioned into 15-um-thick coronal sections using a Leica cryostat (CM3050 S). Sections
containing the PFC were mounted onto poly-L-lysine-coated glass slides and stored at —80 °C until further use. For the
hybridization procedure, the sections were fixed in 4% PFA for 10 min, permeabilized with pre-cooled methanol at =80 °C
for 15min, and digested with pepsin (2mg/mL; Sigma-Aldrich, P0525000) at 37 °C for 90s.

RNA FISH in situ hybridization

The probe design and hybridization procedures were performed according to the Mip-seq protocol [71]. The detailed steps
are as follows: Probe Design and Preparation: Briefly, 22 pairs of padlock probes were designed for each target gene based
on its mMRNA length (all probe sequences are listed in S9 Table). Each padlock probe contains 13-nucleotide (nt) sequences
at both ends that are complementary to the target MRNA. The middle region of the padlock probe comprises two repeats of
the sequence complementary to the fluorescent detection probe. An initiator primer was designed with its 5" end complemen-
tary to the 3’ end of the target sequence and its 3" end complementary to the padlock probe. Padlock probes were phosphor-
ylated using T4 Polynucleotide Kinase (200 uM; Vazyme, N102-01) and subsequently annealed with initiator primer.
Hybridization Procedure: (l) Pretreatment: brain sections were fixed (4% PFA, 10 min), permeabilized (pre-cooled meth-
anol, -80 °C, 15min), and digested with pepsin (2mg/mL, 37 °C, 90s). (II) Hybridization: after washing with PBSTR and 4x
SSC, sections were hybridized with the probe mixture overnight at 37 °C. (Ill) Ligation: sections were incubated with a liga-
tion mixture containing SplintR ligase (1 U/uL) at 25 °C for 2h. (IV) RCA: following a wash, sections were incubated with an
RCA mixture containing Phi29 polymerase (1 U/uL) at 30 °C for 6 h. (V) Detection and Imaging: RCA products were detected
with fluorescent probes (37 °C, 30 min), counterstained with DAPI, and imaged on a Leica THUNDER Imager (20x objective).

scRNA-seq data pre-processing

Raw reads were pre-processed using the BD Rhapsody Whole Transcriptome Analysis (WTA) pipeline (v1.11)
(https://bd-rhapsody-bioinfo-docs.genomics.bd.com). The R1 reads were analyzed to identify the cell label
sequences (CLS), common linker sequences (L), and Unique Molecular Identifier (UMI) sequence. The R2 reads
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were used for aligning to the reference genome and annotating genes. For WTA reference genome, we selected
GRCm38-PhiX-gencodevM19-20181206.tar file. For transcriptome annotation, we selected gencodevM19-20181206.gtf
file. After setting up, we ran pipeline using the default parameters. The expression matrix file generated by pipeline was
used for downstream transcriptome analysis.

scRNA-seq quality control

Single-cell RNA-seq transcriptome analysis is mainly performed by R package Seurat (v4.4.0) [24]. Briefly, Seurat object
was created using the “CreateSeuratObject” function, and the gene expression profile of each cell was then normal-
ized using the “NormalizeData” function with scale.factor = 10000. We filtered the following cells: nCount_RNA < 1000,
nFeature_RNA < 1000, and mitochondrial contents > 15%. The following genes were filtered: min.cells <3, mitochondrial
genes, and ribosomal genes. Then, the R package DoubletFinder (v2.0.3) [72] was used to remove potential doublets.

Clustering of scRNA-seq transcriptome

Firstly, Harmony (v1.2.0) [25] was used to remove batch effects between four samples. The “RunHarmony” function was
applied to integrate the four datasets. After integration, we performed the standard Seurat clustering analysis workflow.
We used the “ScaleData” function to scale the integrated data, and performed principal component analysis (PCA) using
the “RunPCA” function. Then we computed the nearest neighbors used the “FindNeighbors” function with top 30 PCs. The
“FindClusters” function was used for clustering analysis with resolution=0.5. Then, the clusters were annotated based

on previously reported markers of PFC cell types [23]. We manually removed some mixed low-quality cell clusters that
expressed markers of multiple cell types. Twenty-one cell subtypes were annotated. Then, we ran the UMAP dimensional
reduction using the “RunUMAP” functions, and visualized data using functions provided by Seurat. In total, our data con-
tains a transcriptome expression matrix of 54,763 cells and 31,158 genes.

Stereo-seq spatial spot annotation

We collected previously published stereo-seq data from sagittal sections of mice at P1 and P77 [29], and extracted the
PFC region for spatial transcriptomic analysis. To annotate spots in stereo-seq data, we used Cell2location (v0.1.4) [30] to
map the annotated information of our scRNAseq subtypes onto the bin50 spots in stereo-seq data. Briefly, we first used
“filter_genes” function to filter low-quality genes with parameters: cell_count_cutoff=15, cell_percentage_cutoff2=0.05,
nonz_mean_cutoff=1.12. The signatures were estimated from scRNAseq data to account for potential batch effect using
“setup_anndata” function with default parameters. Then we used Cell2location function to create and train a cell2location
spatial mapping model with parameters: N_cells_per_location=1, detection_alpha=200. Finally, we exported the esti-
mated cell subtypes abundance, and take a cell subtype with the highest abundance score as the identity for each spot in
the stereo-seq data. The Endo subtype was excluded from subsequent analyses, due to its abnormal score and was not
the focus of this study.

Supervised classification framework

To identify the associations among neuronal subtypes at different ages, we used XGBoost [73], a gradient boosted deci-
sion tree-based supervised classification framework. Three time periods, P1-P4, P4-P10, and P10—Adult were compared.
Two thousand highly variable genes were used as input features for XGBoost, and neuronal subtype labels were used

as output. We trained XGBoost classifier to learn neuronal subtype labels from the previous age dataset, and used it to
classify cells in the next age dataset. The correspondences between the true label of the next age dataset and the label
assigned by the XGBoost classifier was used to map neuronal subtypes between different ages. The main steps are as
follows: We use the R package xgboost (v1.7.5.1) to implement XGBoost supervised classification. The “xgb.DMatrix”
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function was used to construct the xgb.DMatrix object using 2,000 highly variable genes and neuron subtype labels. We
used the “xgb.cv” function to perform cross-validation to determine the optimal number of iterations. Then, the XGBoost
model was trained using the “xgboost” function. Finally, the “predict” function was used to perform prediction.

Differential gene expression analysis

To perform differential gene expression analysis, we used the Wilcoxon rank-sum test, a nonparametric test, to compare
whether there is a significant difference in the medians of two independent samples. Log2 fold change >0.25 was used

as the threshold to determine significant genes. Specifically, we used the “FindAllIMarkers” function from the R package
Seurat (v4.4.0) to perform differential gene expression analysis with parameters: logfc.threshold =0.25, test.use = “wilcox”.

Gene ontology enrichment analysis

GO terms enrichment analysis was performed using gProfiler [74] with default parameters. The adjusted p-values <0.05
was used as the significance threshold. And the results of GO terms were limited to enrichment in GO biological
processes.

Constructing single cell trajectories

To investigate the development of IT neurons and glia cells, we reconstructed the developmental trajectories using
Monocle2 (v2.24.0) [34]. Briefly, CellDateSet object was created using the “newCellDataSet” function, and 2,000 high
variable genes were selected to define cellular processes using the “setOrderingFilter” function. Then, “reduceDimen-
sion” function was performed to reduce data dimensionality with parameters: max_components =2, method =“DDRTree”.
Finally, cells were sorted along the pseudotime trajectories using the “orderCells” function. We visualized the analysis
results through the visualization function provided by Monocle2.

Differential gene expression analysis of genes along pseudotime

The differential gene expression analysis of genes along pseudotime was performed using the Generalized Additive
Model (GAM) in Monocle2. Monocle2 assigned each cell a “pseudotime” value, which recorded its progress through the
process in the experiment. The GAM can model a gene’s expression level as a smooth, nonlinear function of pseudo-
time. Then, likelihood ratio test was used to identify pseudotime-related genes. The main steps are as follows: We used
the “differentialGeneTest” function from the R package Monocle2 (v2.24.0) to find DEGs related to pseudotime with
parameter: fullModelFormulaStr="“~sm.ns(Pseudotime)”. The g-values<0.01 were used as the significance threshold.

Then, we used “ward.D2”, a hierarchical clustering algorithm, to cluster pseudotime DEGs into modules. Specifically,
we used the “plot_pseudotime_heatmap” function from the R package Monocle2 (v2.24.0) to plot a heatmap of DEGs
along pseudotime with parameter: hclust_method =“ward.D2”.

Identifying single-cell transcription factor regulatory network

We used pySCENIC (v0.11.2) [35] package to identify TF regulatory network from scRNAseq data. First, we used the
mm_mgi_tfs.txt file to filter out TFs in our data and generated co-expression modules using the GRNBoost2 algorithm.
Then, we used “pyscenic ctx” command to prune the initial network based on the relationship between motifs and TFs and
the ranking of motifs on gene regulation. Finally, we used “aucell” to identify cells with active gene sets in scRNAseq data.

Single-cell weighted gene co-expression network analysis

Single-cell weighted gene co-expression network analysis is mainly performed by R package hdWGCNA (v0.3.01) [40].
Briefly, “SetupForWGCNA” function was used to select neural signal molecule or neural circuit wiring molecule genes
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for analysis. We used “MetacellsByGroups” function to construct metacell expression matrix, and normalized the matrix
using “NormalizeMetacells” function. Then, “SetDatExpr” function was used to specify the expression matrix for network
analysis, and soft power threshold was selected using “TestSoftPowers” function. We used “ConstructNetwork” function to
construct the co-expression network, and visualized the network using functions provided by hdWGCNA.

Cell-cell communication analysis

To investigate the interactions among glial subtypes and IT neuron subtypes, we employed CellChat (v2.1.2) [46] to infer
intercellular communication networks for each time point using snRNA-seq data. Briefly, “createCellChat” function was
used to create a CellChat object, and CellChatDB.mouse databse was selected using “subsetDB” function. Then, we used
“‘computeCommunProb” and “filterCommunication” functions to compute and filter the communication probability between
each cell subtypes with parameters: type =“triMean”, min.cells=10. The communication probability of each signaling path-
way was computed using “computeCommunProbPathway” function. Finally, “aggregateNet” function was used to calculate
the aggregated network.

Ligand-receptor spatial colocalization analysis

To quantify gene expression, we segmented cells in the DAPI images using cellpose (v3.1.1.1) [75] and then calculated
the fluorescence intensity of Sema3d and Pixna1 in each cell as the expression level. Then, we used SpaGene (v0.1.0)
[76] to calculate the strongest ligand-receptor interaction between each cell and its five spatial nearest neighbors as the
ligand-receptor colocalization expression level. Briefly, “models.Cellpose” function was used to load the cellpose model
with parameters: model_type =‘nuclei’, gpu=True. Then we used the “model.eval” function to perform cell segmentation
with parameters: flow_threshold=0.4, cellprob_threshold =0, diameter=30, min_size =15. Finally, the “plotLR” function in
SpaGene was used to calculate the colocalization expression scores of Sema3d and Plxna1 ligand-receptor.

Disease risk genes enrichment analysis

The neurological diseases GWAS summary statistics were collected from previous studies (S7 Table) [50-58]. First, we
used MAGMA (v1.10) [77] to perform SNP annotation and GWAS disease risk gene weighting. The top 1,000 GWAS
disease risk genes by weight score were used for further analysis (S8 Table). Then we used scDRS (v1.0.4) [49] to
perform disease risk genes enrichment analysis. Briefly, “scdrs compute-score” command was used to evaluate disease
enrichment to individual cells. Then, “scdrs perform-downstream” command was used to obtain the group-level statistics
for each cell type. All parameters are set to the default values according to scDRS documentation. The P-value <0.05 was
used as the threshold of significance.

Supporting information

S1 Fig. Cell subtypes and marker genes of mouse PFC during postnatal development. (A) Uniform Manifold
Approximation Projection (UMAP) visualization of mouse PFC cell subtypes at different postnatal developmen-

tal stages. (B) Dotplot shows the expression patterns of marker genes in cell subtypes (top). Barplot shows the
proportion of different time stages in each cell subtype. (C) Violin plot shows the expression patterns of marker genes
in IT neuron subtypes. (D) Allen mouse brain ISH images of marker genes at E18.5, P4, P14, and P56. (E) Bar plot
shows the coefficient of variation of the changes in the proportion of different neuronal subtypes during development.
(F) A full sagittal section of Allen Mouse Brain atlas with the PFC region circled in red color. Allen Mouse Brain Atlas,
mouse.brain-map.org and atlas.brain-map.org. (G) Spatial distribution of each cell subtype in mouse PFC from

P1 stereo-seq data. (H) Spatial distribution of each cell subtype in mouse PFC from Adult stereo-seq data.

(TIF)
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S2 Fig. Neuronal subtypes proportion and differentially expressed genes in mouse PFC during postnatal
development. (A) Uniform Manifold Approximation Projection (UMAP) of all neurons in mouse PFC from scRNA-seq,
which is colored by time stages. (B) Line plot shows the proportion of each neuronal subtype during postnatal develop-
ment. IT neurons are merged into one subtype. The data underlying this Figure can be found in'S1 Data. (C) Line plot
shows the proportion of each IT neuronal subtype during postnatal development. The data underlying this Figure can be
found in S1 Data. (D) The number of up-regulated and down-regulated DEGs of each neuronal subtype between different
postnatal stages. The neuronal subtypes of each stage are compared with the same neuronal subtypes of the previous
stage. Orange, up-regulated genes; purple, down-regulated genes. (E) Violin plot shows the expression level of Clstn2
gene in L2/3 IT neurons at different postnatal stages. (F) Violin plot shows the expression level of Ketd12 gene in L6 IT
neurons at different postnatal stages. (G) Violin plot shows the expression level of Igfbp4 gene in L2/3 IT neurons at differ-
ent postnatal stages. (H) Violin plot shows the expression level of Cck gene in all IT neurons at different postnatal stages.
(TIF)

S3 Fig. The pseudotime trajectories and transcription factor relguons of mouse PFC IT neuron. (A) Uniform Manifold
Approximation Projection (UMAP) of all IT neurons in mouse PFC from scRNA-seq, which is colored by time stages. (B)
Pseudotime trajectory of IT neurons, which is colored by pseudotime value. (C) Pseudotime trajectory of IT neurons, which is
colored by pseudotime states. (D) Box plot shows the pseudotime distribution in each time stages. The data underlying this
Figure can be found in S1 Data. (E) Regulon specificity score (RSS) ranking of relguons in each IT neuron subtype.

(TIF)

S$4 Fig. Cadherin and axon guidance genes co-expression modules. (A) Volcano plots show the differentially
expressed cadherin and axon guidance genes of each IT neuron subtype at different developmental stages. For each
stage, each IT neuron subtype is compared with other IT subtypes. Orange, up-regulated genes; purple, down-regulated
genes. (B) hdWGCNA dendrogram of the co-expression network of cadherin and axon guidance genes. (C)
Co-expression network diagram for module 2 to module 5. (D) Violin plots show the expression level of top 5 hub genes
for module 2 to module 5 at different postnatal stages. (E-H) Allen mouse brain ISH images of Sema4g (E), Cdh13 (F),
Camk2a (G), Cdh11 (H) gene at E18.5, P4, P14, and P56.

(TIF)

S5 Fig. Glia cells pseudotime trajectories and their intercellular communication with IT neurons. (A) Uniform Manifold
Approximation Projection (UMAP) of all glial cells in mouse PFC from scRNA-seq, which is colored by time stages. Microglia
are excluded due to different developmental origins. (B) Pseudotime trajectory of glial cells, which is colored by time stages.
(C) Pseudotime trajectory of glial cells, which is colored by pseudotime states. (D) Box plot shows the pseudotime distribu-
tion in each time stages. The data underlying this Figure can be found in S1 Data. (E-H) Dot plots show significant ligand-
receptor interactions among Astrocyte (E), Microglia (F), Oligo (G), OPC (H), and IT subtypes across time points. The dot
color indicates the communication probability, and the dot size reflects the P value. The square color indicates time points. (1)
Violin plots show the expression levels of the ligand gene Slit2 in astrocytes (top) and the receptor gene Robo1 in IT neurons
(bottom) at different postnatal stages. (J) RNA FISH of Sema3d and Plxna1 ligand-receptor genes at P10 (left) and Adult
(right) in mice PFC. The small boxes indicate the expression of each gene. Blue: DAPI, green: Sema3d, red: Pixna1.

(TIF)

S6 Fig. Expression of neurological disease risk genes in mouse PFC. (A—G) Volcano plots show the differential
expression of BP (A), ADHD (B), SCZ (C), TS (D), ANO (E), ASD (F), and OCD (G) risk genes across different postnatal
stages in subtypes marked with asterisks in Fig 6A. The top 3 risk genes are displayed in each subtype. (H) Uniform Mani-
fold Approximation Projection (UMAP) visualization of the ADHD, BP, ASD, OCD, SCZ, and TS scDRS disease score.
(TIF)
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S7 Fig. Overview of the PFCdev-web. PFCdev-web is a shisny application that allows users to interactively access our
data. Home Page provides information about our project and how to use it interactively. Users can access our scRNAseq
data through scRNAseq Page, and access processed stereo-seq data through Spatial Page.

(TIF)

S$1 Table. Differentially expressed genes (DEGs) for each cell subtype.
(XLSX)

S2 Table. Differentially expressed genes (DEGs) between immature and mature IT neurons.
(XLSX)

S3 Table. Significant genes associated with pseudotime of IT neurons.
(XLSX)

S$4 Table. Regulon specificity score (RSS) of relguons in each IT subtype.
(XLSX)

S5 Table. hdWGCNA co-expression modules of cadherin and axon guidance genes.
(XLSX)

S6 Table. Significant genes associated with pseudotime of glia cells.
(XLSX)

S7 Table. GWAS summary statistics for 8 PFC-associated neurological diseases.
(XLSX)

S8 Table. Top 1,000 GWAS disease risk genes by weight score.
(XLSX)

S9 Table. RNA FISH probe sequence.
(XLSX)

S1 Data. Additional numerical data for Figs 2C, 5K, S2B, S2C, S3D, and S5D.
(XLSX)
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