# Install packages
if (!requireNamespace("destiny", quietly = TRUE)) {
install_github("theislab/destiny")
}if (!requireNamespace("ggplotify", quietly = TRUE)) {
install.packages("ggplotify")
}if (!requireNamespace("scatterplot3d", quietly = TRUE)) {
install.packages("scatterplot3d")
}if (!requireNamespace("ggpubr", quietly = TRUE)) {
install.packages("ggpubr")
}
# Load packages
library(destiny)
library(ggplotify)
library(scatterplot3d)
library(ggpubr)
Diffusion Map
Diffusion Map is a nonlinear dimensionality reduction algorithm that can be used to visualize developmental trajectories.
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
destiny
;ggplotify
;scatterplot3d
;ggpubr
Data Preparation
# Load data
<- read.delim("files/Hiplot/042-diffusion-map-data1.txt", header = T)
data1 <- read.delim("files/Hiplot/042-diffusion-map-data2.txt", header = T)
data2
# convert data structure
<- data2
sample.info rownames(data1) <- data1[, 1]
<- as.matrix(data1[, -1])
data1 ## tsne
set.seed(123)
<- DiffusionMap(t(data1))
dm_info <- cbind(DC1 = dm_info$DC1, DC2 = dm_info$DC2, DC3 = dm_info$DC3)
dm_info <- data.frame(
dm_data sample = colnames(data1),
dm_info
)
<- sample.info[match(colnames(data1), sample.info[, 1]), "Group"]
colorBy <- factor(colorBy, level = colorBy[!duplicated(colorBy)])
colorBy $colorBy = colorBy
dm_data
# View data
head(dm_data)
sample DC1 DC2 DC3 colorBy
M1 M1 0.05059918 0.15203860 -0.06533168 G1
M2 M2 0.05030863 0.14435034 -0.06044277 G1
M3 M3 0.04271398 0.09273382 -0.02730427 G1
M4 M4 0.04680742 0.10425273 -0.03789962 G1
M5 M5 0.04971521 0.12786900 -0.05608321 G1
M6 M6 0.04840072 0.12728303 -0.05256815 G1
Visualization
1. 2D
# 2D Diffusion Map
<- ggscatter(data = dm_data, x = "DC1", y = "DC2", color = "colorBy",
p size = 2, palette = "lancet", alpha = 1) +
labs(color = "Group") +
ggtitle("Diffusion Map") +
scale_color_manual(values = c("#3B4992FF","#EE0000FF","#008B45FF")) +
theme_classic() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p

2. 3D
# 3D Diffusion Map
<- c("#3B4992FF","#EE0000FF","#008B45FF")
group.color names(group.color) <- unique(dm_data$colorBy)
<- group.color[!is.na(names(group.color))]
group.color if (length(group.color) == 0) {
<- c(Default="black")
group.color $colorBy <- "Default"
dm_data
}<- as.ggplot(function(){
p scatterplot3d(x = dm_data$DC1, y = dm_data$DC2, z = dm_data$DC3,
color = alpha(group.color[dm_data$colorBy], 1),
xlim=c(min(dm_data$DC1), max(dm_data$DC1)),
ylim=c(min(dm_data$DC2), max(dm_data$DC2)),
zlim=c(min(dm_data$DC3), max(dm_data$DC3)),
pch = 16, cex.symbols = 0.6,
scale.y = 0.8,
xlab = "DC1", ylab = "DC2", zlab = "DC3",
angle = 40,
main = "Diffusion Map",
col.axis = "#444444", col.grid = "#CCCCCC")
legend("right", legend = names(group.color),
col = alpha(group.color, 0.8), pch = 16)
})<- p + theme_classic()
p
p
