# 安装包
if (!requireNamespace("ggdist", quietly = TRUE)) {
install.packages("ggdist")
}if (!requireNamespace("tidyr", quietly = TRUE)) {
install.packages("tidyr")
}if (!requireNamespace("broom", quietly = TRUE)) {
install.packages("broom")
}if (!requireNamespace("modelr", quietly = TRUE)) {
install.packages("modelr")
}if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}
# 加载包
library(ggdist)
library(tidyr)
library(broom)
library(modelr)
library(ggplot2)
分布图
分布图是一种采用置信分布的可视化图形。
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
ggdist
;tidyr
;broom
;modelr
;ggplot2
数据准备
载入数据为 5 种条件及其对应的值。
# 加载数据
<- read.delim("files/Hiplot/066-ggdist-data.txt", header = T)
data
# 整理数据格式
1] <- factor(data[, 1], levels = rev(unique(data[, 1])))
data[, <- tibble(data)
data = lm(response ~ condition, data = data)
data2 <- data_grid(data, condition) %>%
data3 augment(data2, newdata = ., se_fit = TRUE)
# 查看数据
head(data)
# A tibble: 6 × 2
condition response
<fct> <dbl>
1 A -0.420
2 B 1.69
3 C 1.37
4 D 1.04
5 E -0.144
6 A -0.301
可视化
# 分布图
<- ggplot(data3, aes_(y = as.name(colnames(data[1])))) +
p stat_dist_halfeye(aes(dist = "student_t", arg1 = df.residual(data2),
arg2 = .fitted, arg3 = .se.fit),
scale = .5) +
geom_point(aes_(x = as.name(colnames(data[2]))),
data = data, pch = "|", size = 2,
position = position_nudge(y = -.15)) +
ggtitle("ggdist Plot") +
xlab("response") + ylab("condition") +
theme_ggdist() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12,hjust = 0.5),
axis.title = element_text(size = 12),
axis.text = element_text(size = 10),
axis.text.x = element_text(angle = 0, hjust = 0.5,vjust = 1),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10))
p

图示给出的是条件下均值的置信度分布,可以看出 5 种条件下对应值的大致分布情况。