# 安装包
if (!requireNamespace("NeuralNetTools", quietly = TRUE)) {
install.packages("NeuralNetTools")
}if (!requireNamespace("nnet", quietly = TRUE)) {
install.packages("nnet")
}
# 加载包
library(NeuralNetTools)
library(nnet)
神经网络
注记
Hiplot 网站
本页面为 Hiplot Neural Network
插件的源码版本教程,您也可以使用 Hiplot 网站实现无代码绘图,更多信息请查看以下链接:
环境配置
系统: Cross-platform (Linux/MacOS/Windows)
编程语言: R
依赖包:
NeuralNetTools
;nnet
数据准备
# 加载数据
<- read.delim("files/Hiplot/129-neural-network-data.txt", header = T)
data
# 查看数据
head(data)
Y1 Y2 X1 X2 X3
1 0.7646258 0.5494452 -0.89691455 -1.8923489 0.6408445
2 0.2383994 0.4605024 0.18484918 1.2928042 -1.6013778
3 0.3800247 0.2527468 1.58784533 -0.6182543 -0.7778154
4 0.3545279 0.6319730 -1.13037567 1.0409383 -1.6473925
5 0.3667356 0.4684437 -0.08025176 1.1758795 0.1542662
6 0.5509560 0.4439474 0.13242028 -1.5018321 -1.1756313
可视化
# 神经网络
<- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 10,
mod maxint = 100, decay = 0)
# weights: 51
initial value 10.118863
iter 10 value 0.431270
iter 20 value 0.219711
iter 30 value 0.165631
iter 40 value 0.089001
iter 50 value 0.022916
iter 60 value 0.015020
iter 70 value 0.010775
iter 80 value 0.006577
iter 90 value 0.004171
iter 100 value 0.003627
final value 0.003627
stopped after 100 iterations
# plot
par(mar = numeric(4))
plotnet(mod)
