# Install packages
if (!requireNamespace("NeuralNetTools", quietly = TRUE)) {
install.packages("NeuralNetTools")
}if (!requireNamespace("nnet", quietly = TRUE)) {
install.packages("nnet")
}
# Load packages
library(NeuralNetTools)
library(nnet)
Neural Network
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Neural Network
plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
NeuralNetTools
;nnet
Data Preparation
# Load data
<- read.delim("files/Hiplot/129-neural-network-data.txt", header = T)
data
# View data
head(data)
Y1 Y2 X1 X2 X3
1 0.7646258 0.5494452 -0.89691455 -1.8923489 0.6408445
2 0.2383994 0.4605024 0.18484918 1.2928042 -1.6013778
3 0.3800247 0.2527468 1.58784533 -0.6182543 -0.7778154
4 0.3545279 0.6319730 -1.13037567 1.0409383 -1.6473925
5 0.3667356 0.4684437 -0.08025176 1.1758795 0.1542662
6 0.5509560 0.4439474 0.13242028 -1.5018321 -1.1756313
Visualization
# Neural Network
<- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 10,
mod maxint = 100, decay = 0)
# weights: 51
initial value 106.598439
iter 10 value 0.420388
iter 20 value 0.197764
iter 30 value 0.121837
iter 40 value 0.068623
iter 50 value 0.044670
iter 60 value 0.032498
iter 70 value 0.023569
iter 80 value 0.017268
iter 90 value 0.012970
iter 100 value 0.009849
final value 0.009849
stopped after 100 iterations
# plot
par(mar = numeric(4))
plotnet(mod)
