# Install packages
if (!requireNamespace("plotROC", quietly = TRUE)) {
install.packages("plotROC")
}if (!requireNamespace("survivalROC", quietly = TRUE)) {
install.packages("survivalROC")
}if (!requireNamespace("ggplot2", quietly = TRUE)) {
install.packages("ggplot2")
}if (!requireNamespace("grid", quietly = TRUE)) {
install.packages("grid")
}
# Load packages
library(plotROC)
library(survivalROC)
library(ggplot2)
library(grid)
Time ROC
Note
Hiplot website
This page is the tutorial for source code version of the Hiplot Time ROC
plugin. You can also use the Hiplot website to achieve no code ploting. For more information please see the following link:
Receiver Operating Characteristic (ROC) analysis with time records in survival analysis.
Setup
System Requirements: Cross-platform (Linux/MacOS/Windows)
Programming language: R
Dependent packages:
plotROC
;survivalROC
;ggplot2
;grid
Data Preparation
: (Numeric) survival data (i.e survive, risk). : (Numeric) time data.
# Load data
<- read.delim("files/Hiplot/171-time-roc-data1.txt", header = T)
data1 <- read.delim("files/Hiplot/171-time-roc-data2.txt", header = T)
data2
# convert data structure
<- data1
surv_table colnames(surv_table) <- c("surv", "cens", "risk")
<- as.data.frame(data2)[, 1]
mtime <- lapply(mtime, function(t) {
sroc <- survivalROC(
stroc Stime = surv_table$surv,
status = surv_table$cens,
marker = surv_table$risk,
predict.time = t,
method = "KM"
)data.frame(
TPF = stroc[["TP"]],
FPF = stroc[["FP"]],
cut = stroc[["cut.values"]],
time = rep(
"predict.time"]],
stroc[[length(stroc[["TP"]])
),AUC = rep(
$AUC,
stroclength(stroc$FP)
)
)
})<- do.call(rbind, sroc)
mroc $time <- factor(mroc$time)
mroc
# View data
head(data1)
surv cens risk
1 11.126027 0 0.19205450
2 9.794521 0 0.47734974
3 13.690411 0 0.04605343
4 10.068493 0 0.29717146
5 3.317808 0 0.18144610
6 12.312329 0 0.62681895
head(data2)
times
1 2
2 4
3 6
4 8
5 10
Visualization
# Time ROC
<- c("#E64B35FF","#4DBBD5FF","#00A087FF","#3C5488FF","#F39B7FFF")
col <- ggplot(mroc, aes(x = FPF, y = TPF, label = cut, color = time)) +
p ::geom_roc(labels = FALSE, stat = "identity", n.cuts = 0) +
plotROCgeom_abline(slope = 1, intercept = 0, color = "red", linetype = 2) +
labs(title = "ROC Dependence Time", x = "False positive rate",
y = "True positive rate",
color = paste("Time", "(", "Year", ")")) +
theme_bw() +
theme(text = element_text(family = "Arial"),
plot.title = element_text(size = 12, hjust = 0.5),
axis.title = element_text(size = 10),
legend.position = "right",
legend.direction = "vertical",
legend.title = element_text(size = 10),
legend.text = element_text(size = 10)) +
scale_color_manual(values = col)
<- levels(factor(mroc$AUC))
auc for (i in 1:length(auc)) {
<- p + annotate("text",
p x = 0.75,
y = 0.05 + 0.05 * i, ## ๆณจ้text็ไฝ็ฝฎ
col = col[i],
label = paste(
paste(paste(mtime[i], "Year", sep = " "), " = "),
round(as.numeric(auc[i]), 2)
)
)
}
p
